Noname manuscript No.
(will be inserted by the editor)

Anarchy, Stability, and Utopia: Creating Better Matchings

Elliot Anshelevich .- Sanmay Das - Yonatan
Naamad

September 2011

Abstract Historically, the analysis of matching has centered on designing algo-
rithms to produce stable matchings as well as on analyzing the incentive compat-
ibility of matching mechanisms. Less attention has been paid to questions related
to the social welfare of stable matchings in cardinal utility models. We examine
the loss in social welfare that arises from requiring matchings to be stable, the
natural equilibrium concept under individual rationality. While this loss can be
arbitrarily bad under general preferences, when there is some structure to the
underlying graph corresponding to natural conditions on preferences, we prove
worst case bounds on the price of anarchy. Surprisingly, under simple distribu-
tions of utilities, the average case loss turns out to be significantly smaller than
the worst-case analysis would suggest. Furthermore, we derive conditions for the
existence of approximately stable matchings that are also close to socially optimal,
demonstrating that adding small switching costs can make socially (near-)optimal
matchings stable. Our analysis leads to several concomitant results of interest on
the convergence of decentralized partner-switching algorithms, and on the impact
of heterogeneity of tastes on social welfare.

Keywords Stable Matching - Price of Anarchy - Price of Stability - Approximate
Equilibrium

1 Introduction

This paper investigates the social quality of stable matchings. The theory of stable
matching has received a tremendous amount of attention because of its many ap-
plications, including matching graduating medical students to residency programs
[24], and matching kidney donors with recipients [25,26]. Most of the work on
stable matching has assumed that the agents being matched have some preference
ordering on who they would like to be matched with, without assigning a concrete
utility for agent ¢ being matched with agent j [28,29,19, inter alia]. This is natural,

A preliminary version of this paper appeared in SAGT 2009.

Address(es) of author(s) should be given

2 Elliot Anshelevich et al.

because stability as a concept does not need the stronger requirement of ascribing
utilities to outcomes: it only needs the ranking of matchings from the perspective
of every agent.

Matching problems, however, often bring with them outcomes that need to
be evaluated in terms of utility. This occurs, for example, in pair programming,
a central practice of the software engineering methodology known as Extreme
Programming [13]. The utility of a matching is a function of the productivity of
a pair of programmers working together. In kidney exchange, incompatible pairs
of people (one needing a kidney, and one willing to donate a kidney) are matched
with other similar pairs. Kidney exchange can be analyzed in both a 0-1 preference
framework based on compatibility [25,26], but attention has shifted to the quality
of the match produced and other factors that affect the “score” of a pairing [31];
further, the literature on cadaveric kidney transplants evaluates success in terms of
the quality of the match produced [18]. In fact, the operations research literature on
cadaveric kidney donation is often explicit in attempting to optimize measures like
quality-adjusted life years for all recipients [32]. In these examples, as well as many
other stable matching scenarios, the goal is not only to form stable matchings, but
also to form matchings with high overall utility.

The properties of matching mechanisms determine the utilities received by
agents in these situations. A good mechanism for kidney exchange could arrange
the best possible matches for recipients, and also make donors happier with their
decision to donate. A good mechanism for pairing programmers would lead to the
best possible programming productivity for their employer. Inevitably, there is
a tradeoff between stable matchings, which are pairwise (or groupwise) rational,
and socially optimal matchings (for our purposes, for the rest of this paper we
assume simple additive social utilities, so that the socially optimal matching is the
one that maximizes the sum of utilities received by each individual). The central
question of mechanism design for matching markets is how to get people into
“good” matchings, however “good” is defined. Almost all the work on matching
mechanism design has focused on engineering stable matchings. This work has
met with significant large-scale success in applications like matching graduating
medical students to residency programs, and matching students to public high
schools [1,24]. Some of this work, especially recent work on designing high school
student matches, also explicitly seeks to realize the best matchings for one side
of the market (in the high school case, the best matchings for students), but the
notion of welfare is weak pareto-optimality among the set of stable matches for
one side of the market [2].

The focus of this paper is on extending our understanding of matching prob-
lems in situations where we are concerned with social welfare in terms of utility,
instead of just stability and choice among stable outcomes. Several alternatives
may be available in these situations, ranging from purely centralized allocation
based on information available to a matchmaker, to purely individual decision-
making based on personal preferences. The first set of questions that arises can be
divided into three categories: (1) How bad are stable matchings when compared
with socially optimal ones? (2) Can agents find stable matchings on their own?
What are the outcomes of algorithms they may actually use in practice? (3) How
can we incentivize agents to participate in matchings that are socially desirable?

Anarchy, Stability, and Utopia: Creating Better Matchings 3

1.1 Our Results

We initiate an investigation of these questions, and give both theoretical and sim-
ulation results, considering the effects of different network structures and utility
distributions. Section 2 introduces the matching model, as well as the types of
network structures on preferences we consider. Section 3 studies the truthfulness
properties of a simple greedy algorithm that can be shown to find the stable match-
ing under two of the main network structures on preferences that we consider. After
establishing these preliminaries, we tackle the broad questions above.

Price of Anarchy Bounds. The tradeoff between stable matchings and socially
optimal matchings is quantified by the price of anarchy: the ratio between the
maximum possible social utility and the utilities of equilibrium outcomes (stable
matchings). Understanding the price of anarchy is important, since it acts as a
bound on the amount of improvement in stable matchings that better mechanisms
could yield. !

The price of anarchy can vary widely depending on the problem instance and
the preference structure. As an example, Figure 1 illustrates some cases where the
stable matching is highly socially suboptimal (discussed in more detail in the next
section). In two of the underlying types of graph structures, the price of anarchy
is at most two (and the bound can be tight), while in the third the social utility
of the stable matching can be arbitrarily bad compared with the socially optimal
one. But how bad are stable matchings in expectation?

This question is tackled in detail in Section 4. Empirically, we find that despite

the potentially bad worst-case behavior, across many different random distribu-
tions of preferences and several graph structures the price of anarchy tends to be
lower (even the worst stable matchings usually achieve above 90% of the utility of
socially optimal matchings). There are also some cases where the price of anarchy
is not the right measure — we show a case where tweaking a preference-related
parameter increases the price of anarchy significantly, but makes everyone bet-
ter off in expectation because it raises the value of the optimal social matching.
When the price of anarchy is a good measure, how can we incentivize socially good
matchings?
Creating Better Stable Matchings. Given the agents’ utilities, the social-welfare
maximizing matching can be computed by finding a maximum weighted matching
on a graph. We cannot just force people to accept such a matching because of
individual preferences. But what if we could suggest a good matching, and provide
some incentives for agents to go along with those matchings? This is the subject
of Section 5. We consider changing incentives to make more socially desirable
matchings become stable by adding switching costs (corresponding to a notion of
approzimate stability into the system.

We show theoretical bounds on the price of stability, the ratio of the social util-
ity of the best (approximately) stable matching to the socially optimal matching.
Our proof is constructive: we present an algorithm that constructs an approxi-
mately stable matching that achieves the best ratio. A matchmaker could use this
algorithm to suggest a high quality approximately stable matching to all agents.

1 'We note that our models theoretically allow for ties in preference orderings (although, with
utilities on the real number line, the probability of such ties under random sampling is 0), so
the notion of stability we use is weak stability, where both agents must strictly benefit from a
switch [20].

4 Elliot Anshelevich et al.

If they participated in the mechanism under the knowledge that they would have
to pay a switching cost to deviate from the suggested matching, this would lead
to matchings that were close to socially optimal. Additionally, simulation results
show that the algorithm typically achieves even better performance (in terms of
closeness to social optimality) than guaranteed by the theoretical bounds.

Convergence to Stability. Will stable matchings arise in practical situations,
where each participant does not want to submit his or her preferences to a cen-
tralized matchmaker? Previous work has focused especially on randomized best
response dynamics [6,27]. We know that simple decentralized partner switching
algorithms can fail to converge to stable matchings in many situations [6]. However,
what happens in cases where the structure of preferences obeys some extra con-
straints? In Section 6 we consider several greedy algorithms for partner-switching,
and prove convergence guarantees. In addition, we show in simulation that the
greedy algorithms converge quickly to stability for some simple yet natural distri-
butions of utilities.

1.2 Related Work

Matching, the process of agents forming beneficial partnerships, is one of the most
fundamental social processes. Examples of matching with self-interested agents
range from basic social activities like marriage [10], to the core of economic activity
like matching employees and employers [21], to recent innovations in health care
like matching kidney donors and recipients [5,25,26]. The process of matching can
be extremely complex, since (1) agents can have complicated preferences, and (2),
in most social applications agents are self-interested: they care mostly about their
own welfare, and would not obey a centralized matching algorithm unless it was
to their benefit.

For this reason, the outcomes of matching processes are usually analyzed in
terms of stability, the requirement that no collection of agents could form a group
together, and become better off than they are currently [28]. For the classic “stable
marriage” problem [15], this corresponds to the lack of desire of any pair to drop
their current partners and instead match with each other. Stable matching algo-
rithms have been used in many applications including matching medical residents
with hospitals [24], students with sororities and schools [1,23], and online users
with servers.

While stable matchings may be natural outcomes, desirable for various reasons,
there are few guarantees on the quality and social welfare of stable matchings.
Most research on matchings of self-interested agents has focused on (1) defining
outcomes with stability as the goal (most of the work on the design of two-sided
matching markets attempts to do exactly this by defining problems appropriately
[28]), (2) computing stable outcomes and understanding their properties (rang-
ing from the seminal work of [15] to algorithms that try and compute “optimal”
matches, for example by minimizing the average preference ranking of matched
partners [20]), and (3) designing truthful preference-revealing mechanisms (such
as in the New York City [2] and Boston public school matches [3]). Questions about

Anarchy, Stability, and Utopia: Creating Better Matchings 5

the social welfare of stable matchings have been less studied.? There has been lit-
tle research on constructing socially desirable stable outcomes, partly because in
most situations one cannot instruct self-interested agents on what to do in order to
engineer such outcomes, since an agent will only follow instructions if it benefits
them personally. An exception is the recent literature on school choice mecha-
nisms. For example, Abdulkadiroglu et al [4] compare the deferred acceptance
mechanism (incentive compatible) with the Boston Mechanism (not). However,
the focus of their work is on analyzing situations (for example, where schools are
indifferent among students, but students have correlated or identical preferences
among schools) where ex-ante pareto efficiency can be used as a stand-in for social
welfare maximization.

An increasing body of literature in behavioral economics and social science
[33, e.g] suggests that desirable outcomes can be achieved by giving people a little
“nudge” in certain directions, perhaps by altering their incentives slightly, while
still leaving them with freedom to choose their own actions. Small changes that
greatly improve a social system are easy to identify in some situations: for example,
making 401(K) plans opt-out rather than opt-in increases participation dramat-
ically. Finding similar changes in matching scenarios is more difficult because of
the complexity of a system where any agent’s actions can theoretically affect a
large number of other agents.

Before addressing the mechanism design question of how to achieve better
social outcomes, we first need to address the question of whether or not stable
matching can lead to substantial social losses. For this question to make sense,
we first need an objective function that measures the quality of a matching. As
mentioned in the introduction, one of the reasons why the social quality of stable
matchings is usually not addressed is because the agents in question are assumed
to have a preference ordering on their possible partners, without a specific utility
function that states how good a match would be. While there has been some work
on measuring the quality of a matching by, for example, the average preference
ranking of matched partners [20], such measures can sometimes be hard to justify.
For example, for an agent A, the second choice in its preference order might be a
lot worse than its first choice, while for agent B, the second choice might be only
a little bit worse. Measures such as the one above would make no such distinction.
In this paper, we are specifically concerned with contexts where every agent has a
utility function, not just a preference ordering: that is, for every possible partner
v, an agent has a value U(v) specifying how happy it would be to be matched with
v. We are especially concerned with measuring the quality of a matching in terms
of social welfare: the total sum of utilities for all the agents.

2 The Matching Model

In this paper we are concerned with pairwise matching problems. While we focus
on bipartite graphs, (most of) our results also hold for general graphs, and in
our experiments we did not find a significant difference between the quality of
matchings in bipartite and non-bipartite graphs. We assume that each agent gains

2 As mentioned in the introduction, one of the desiderata for matching students with schools
or medical students with residencies can be to compute the stable matching that is best
(typically) for the students, but this is a different notion of welfare.

6 Elliot Anshelevich et al.

some utility from being paired up with another agent. The utility of remaining
unmatched is assumed to be 0. We consider each agent as a vertex in a graph G,
and only agents u and v with the edge (u,v) being present in G are allowed to
be matched with each other. In two-sided matching scenarios, the agents can be
separated into two types, one on each side of the graph, and no edges are allowed
between agents of the same type. Thus, the graph G is assumed to be bipartite. In
one-sided matching, (e.g., the stable roommate problem), the graph G is allowed
to be non-bipartite.
We consider several different utility structures:

1. Vertex-labeled graphs: A vertex-labeled graph is defined as G = (V, E,w)
where V is the set of vertices, E is the set of (undirected) edges, and w is a
vector of weights corresponding to the vertices. When two vertices u and v
are in a matching, the agent corresponding to u receives utility w(v) and the
agent corresponding to v receives utility w(u). These graphs correspond to a
situation where being paired with agent X will yield the same utility to any
agent Y allowed to match with X, independent of the identity of Y.

2. Symmetric edge-labeled graphs: A symmetric edge-labeled graph G = (V, E, w)
is different in that the weights w correspond to edges rather than vertices. When
two vertices u and v are in a matching, the agents corresponding to both w
and v receive utility w({u,v}). These graphs reflect situations where the utility
received by both members of a pair is the same, perhaps determined by their
combined output when working together — for example, pair programming may
be judged by the productivity of the pair. Markets with these types of utilities
are called “correlated two-sided markets” by [6].

3. Asymmetric edge-labeled graphs: An asymmetric edge-labeled graph G =
(V, E,w) is the same except that edges are now directed, and the utility received
by agent v in a matching that includes the pair w,v is given by w(u,v), while
the utility received by v is given by w(v,u). This is the most general case, in
which each agent receives an unconstrained value from each agent they may
possibly be paired with.

We also consider combinations of the above models, such as when agent u’s
utility for being matched with v has a vertex-labeled component w(v), as well as
an edge-labeled component w(u,v). The types of utilities mentioned above arise in
many contexts including market sharing games [17] and distributed caching games
[22]. In the context of marriage markets, vertex-labeled graphs are equivalent to
what Das and Kamenica [12] call sez-wide homogeneity of preferences, and edge-
labeled graphs are equivalent to what they call pairwise homogeneity of preferences.

In addition to these, one can also vary the distributions from which actual
utility values are sampled. We focus on presenting results from experiments with
exponential and uniform distributions. The results we obtained for other distribu-
tions were not significantly different.

3 Greedy Matching Algorithms and Truthfulness
In order to establish some useful preliminaries, we first note that under two of the

preference structures (vertex labeled and symmetric edge labeled) defined above,
stable solutions can be found using a simple greedy algorithm. The algorithm

Anarchy, Stability, and Utopia: Creating Better Matchings 7

first sorts the edges in descending order of weight (where the weight of an edge
in the vertex-labeled formulation is the sum of the weights of the two vertices
it connects). It then evaluates the edges (u,v) in order, and if u and v are both
unmatched, it adds (u, v) to the matching. In both cases, it is easy to see that this
algorithm produces a stable matching.

With arbitrary preference structures, like the asymmetric edge labeled case,
stable matchings are not guaranteed to even exist (although they are known to
exist in bipartite graphs, where they can be found using the Gale-Shapley algo-
rithm [15]). Even if a stable matching does exist, a greedy algorithm may not find
a stable matching.

A natural question is the incentive compatibility of any particular matching
mechanism. We know that for general preferences and bipartite graphs, the Gale-
Shapley algorithm gives participants incentives to lie about their preferences ([14,
16,19]). Specifically, since the outcome of the Gale-Shapley algorithm is the opti-
mal stable outcome for all participants on one side of the market (the proposing
side), participants on the other side may benefit from lying.

What is a meaningful notion of lying under the vertex labeled and symmet-
ric edge labeled preference structures? In the vertex labeled setting, everyone has
the same preferences, and it is safe to assume that that the mechanism has (or
can easily obtain) access to these preferences, so the concept of lying is uninter-
esting. In the symmetric edge labeled framework, there is a plausible notion of
misrepresentation, because a pair may agree to lie about the weight of the edge
between them. Under the Gale-Shapley algorithm on bipartite graphs, it is easy to
see that this would never happen, essentially because the member of the pair on
the proposing side of the market receives the optimal utility he or she can among
the set of stable matches, and therefore has no incentive to deviate. It is relatively
easy to show that the greedy mechanism described above produces a match in
which no pair of agents will simultaneously choose to lie about the weight of the
edge between them, under the condition that they will lie only if both would be
made strictly better off by doing so. The theorem below states and proves this for
general graphs (note that this shows that truth-telling is a Nash equilibrium, not
necessarily a dominant strategy).

Theorem 1 In any symmetric edge-labeled graph, the greedy matching mechanism is
pairwise incentive compatible in the Nash sense: there is no incentive for a pair of agents
to misrepresent the weight of the edge between them if all other pairs are truthfully
revealing their weights.

Proof Let M be the final matching under truthful reporting of weights. Suppose
there were incentive for the agents corresponding to vertices u and v to misrepre-
sent the weight w(u, v) of the edge between them. There are two cases to consider.

First, suppose u and v are matched in M. They both receive utility w(u,v) from
this matching. Both v and v must benefit from the misrepresentation and achieve
a better outcome in the matching M’ generated when they lie about w(u,v). Let
v’ be the vertex u is matched with in M’. Then w(u,v’) > w(u,v).

But then there must exist some u’, the vertex v’ was matched with in M, so
that w(u',v") > w(u,v’), otherwise v and v’ would have been matched in M, since
M is a stable matching. The order of consideration of (u’,v’) and (u,v) is not
affected by the change in reporting of w(u,v), therefore (u,v’) cannot be in the
matching M’ returned by the algorithm with the false report of w(u,v).

8 Elliot Anshelevich et al.

00 ¢

o0 @ ¢

Symmetric edge-labeled
preferences Vertex-labeled preferences Asymmetric edge-labeled

preferences

Fig. 1 Worst-case realizations of the price of anarchy in different models. In each case the
socially optimal matching is {(A4, C), (B, D)} but the only stable matching pairs A and D.

Second, suppose u and v are not matched in M. Without loss of generality,
supposing u is matched with v’ in M, it must be that w(u,v") > w(u,v). If u
and v agree to report some w’ < w(u,v’) this does not affect the outcome of the
matching algorithm. If they agree to report some w’ > w(u,v’), if this does affect
the matching, it can only make u worse off, therefore, it is never profitable for «
to misrepresent.

4 The Price of Anarchy

In general, the price of anarchy is the ratio between the social utility of the (worst)
equilibrium outcome of a game and the maximum social utility possible in that
game. The usual definition relates the largest social welfare achievable to the social
welfare of the worst Nash equilibrium. In the context of matching, we have to move
from the concept of Nash equilibrium to the concept of pairwise equilibrium (i.e.,
stable matching), where pairs of players can deviate simultaneously, and will do
so only if both of them strictly benefit. This is needed since stable outcomes in
matching scenarios are determined by the possibility of pairwise deviations rather
than individual deviations.

The price of anarchy can vary widely depending on the problem instance and
the preference structure. As an example, Figure 1 illustrates some cases where
the stable matching is highly socially suboptimal (the price of anarchy is high) in
the three different preference settings for two-sided matching described in Section
2. On the positive side, below we present price of anarchy bounds for the three
models we consider.

Observation 1 In symmetric edge-labeled graphs, the social utility of any stable match-
ing is at least one-half of the social utility of the optimum matching.

In other words, this observation says exactly that the price of anarchy is at
most 2. Notice that the socially optimal matching is simply the maximum-weight
matching in this model. The above observation is a special case of Theorem 2
(proved in Section 5), but it can also be seen to follow from two facts: (1) Any stable
matching can be returned by the greedy algorithm discussed in Section 3, which
examines edges greedily by magnitude, adding them to the matching if the vertices

Anarchy, Stability, and Utopia: Creating Better Matchings 9

involved have not yet been matched (the particular stable matching produced
depends on the procedure for breaking ties between equal-weighted edges), and
(2) Any greedy solution to the maximum weighted matching problem is within
a factor of two of the optimal solution. Note that this argument holds generally,
even for non-bipartite graphs. Figure 1(a) provides an example of a graph where
this bound is achieved, showing that the bound of 2 on the price of anarchy is
tight.

Observation 2 In vertex labeled graphs the social utility of any stable matching is at
least one-half of the social utility of the optimum matching.

This is a consequence of Theorem 3 (see Section 5 for further discussion).
Again, Figure 1(b) provides an example of a graph where this bound is achieved.

Observation 3 In asymmetric edge-labeled graphs, the social utility of the stable match-
ing can be arbitrarily bad compared with the socially optimal matching.

Consider the case in Figure 1(c) — the utility received by agent B from being
matched with Agent D is arbitrarily high, but the pair is not part of the stable
matching, so the loss in utility can be unbounded. Again this argument holds for
non-bipartite graphs as well.

These are worst-case constructions. A natural question is what the price of
anarchy is like in realistic graphs with different distributions over utilities. We ex-
amined several different distributions of utilities within the three models described
above, and also considered different graph structures in order to get a sense of the
potential practical implications of these price of anarchy results. We used random
distributions of the utility values on random bipartite (and later non-bipartite)
graphs of the different types described above, and computed both the maximum-
weighted stable matching (the socially optimal matching) and a stable matching
using the Gale-Shapley algorithm (in all cases considered here, except one de-
scribed in more detail below, the proposing side does not affect the outcome in
expectation because preference distributions are symmetric).

The price of anarchy is defined as the ratio of the worst stable matching to the
socially optimal matching. In vertex-labeled graphs and symmetric edge-labeled
graphs when utilities are sampled from continuous distributions, there exists a
unique stable matching with probability 1. This is easy to see: consider a match-
ing yielded by a greedy algorithm, where we greedily insert edges into the matching
starting with edges of highest weight (in the case of vertex labels, the weight of
an edge is defined as the sum of endpoint labels). When edge weights are distinct,
this matching is unique, and it is not difficult to show (see the arguments in Sec-
tion 5) that this is also the unique stable matching. Thus, for vertex-labeled and
symmetric edge-labeled graphs, the price of anarchy is easy to compute. Com-
puting the worst stable matching in the case of asymmetric edge-labeled graphs,
on the other hand, may be difficult. Nevertheless, we can efficiently bound the
utility of the worst stable matching in bipartite graphs by computing both side-
optimal stable matchings using the Gale-Shapley algorithm, and then taking the
sum of the utilities received by each agent on the “proposee” side in the two stable
matchings.3

3 Interestingly, the ratio of this lower bound to the utility of either of the two stable match-
ings is surprisingly high, almost always above 0.97 for the graph structures we consider. This is

10 Elliot Anshelevich et al.

1 T T T
_____ A ---- -
aem == A . o
TRE
2 ol o
S 0.9 7
§ o5
<
<
= Z N i == e e
o
e
T 09f 7
c
o
T?J, —@— Asymmetric Exponential
8 —&— Asymmetric Uniform
%] — Symmetric Exponential]
= = = Symmetric Uniform
= A - Vertex-labeled Exponential
0.8 ' % Vertex-labeled Uniform 7
I I I I
2 3 4 5 6 7 8 9

Degree

Fig. 2 Average ratio of the lower-bound on the utility of the worst stable matching to the
maximum weighted matching in three different preference models when utilities are sampled
at random from exponential and uniform distributions with the same mean (0.5: the rate
parameter is 2 for the exponential and the support of the uniform is [0, 1]). Reported values
are averaged over 200 runs. There are 100 agents on each side of the matching market in all
cases. The X axis shows the degree of each node. Note that the ratio is very high, almost never
dropping below 85%, even in individual runs.

Figure 2 shows that when utilities are randomly distributed according to two
common distributions (exponential and uniform, although this result seems to be
robust across many different distributions), the social loss due to stability is not
particularly high in any of the three models we describe above. This is not surpris-
ing for vertex labeled graphs — since any person in the matching will contribute the
same to the total utility regardless of whom they are matched with (for example,
every perfect matching is socially optimal). As the average degree of each vertex
increases, the number of agents getting matched increases, and the ratio quickly
reaches 1, because all stable matchings become perfect at some point. However,
the result is considerably more surprising for the other two cases, particularly for
asymmetric edge-labeled preferences. The only case in which the ratio goes below
0.9 is for exponentially distributed utilities with asymmetric edge-labeled prefer-
ences (the ratio stops declining significantly beyond degree 10). For asymmetric
edge labeled graphs, it makes sense that the ratio declines as the degree of the
graph gets larger, because it becomes possible to construct matchings that are so-
cially much better. Our experiments show that the value of the optimal matching
grows quickly (since it has more options available), while the value of the lower
bound on the utility of a stable matching grows slowly (since it is hampered by
the stability constraint). The actual high percentage is quite surprising given that
in theory, the ratio could be arbitrarily bad. The uniform distribution ratios are
generally higher than those for the exponential distribution because the uniform
distribution enforces a compression in the range of high utilities by capping utilities
at 1.

This high ratio is not an accident of using random bipartite graphs. In simu-
lations involving non-bipartite graphs that are known for their power in modeling
social and engineering systems, namely preferential attachment networks ([9]) and

in line with the literature suggesting that when limited length preference lists are drawn from
random [24] or even arbitrary [19] distributions, the expected number of people with more
than one stable spouse is small.

Anarchy, Stability, and Utopia: Creating Better Matchings 11

0.9 :
—n=20
. ---n=50
0.851 . n=100]||
0.8

0.75

0.7

0'652 3 4 5 6 7 8 9 10

Degree of each vertex

Ratio of stable to optimal matchings

Fig. 3 Average ratio of the realized stable matching to the maximum weighted matching
when the utilities received by those on the less “powerful” side of the market are 10000 times
as high as those received by those on the more powerful side, but the stable matching is
the one optimal for the more powerful side. Results are averaged over 200 runs. Utilities are
exponentially distributed.

small-world networks on a lattice ([34]), the results are similar, with the computed
stable matching achieving, on average, above 95% of the value of the socially op-
timal matching. This result also holds in lattice networks and in networks defined
in Euclidean space where the utility of a matching for any pair is the inverse of
the distance between them.

Thus it appears that in random graphs, stable matchings attain a very high
proportion of the maximum social utility. There are however some preference struc-
tures for which this does not hold. Consider a case where the utilities received by
one side of the market are much higher than utilities received by the other side.
In addition, suppose that the side with lower utilities is more powerful, and is
therefore able to choose the stable matching optimal for those on that side of the
market (these situations could correspond to many in real life — for example, em-
ployers are more powerful than employees). This power structure is implemented
by running the Gale-Shapley algorithm with the more powerful side being the side
that proposes, which results in the best stable matching for the proposing side.
In this case the ratio of utilities can be substantially lower, as seen in Figure 3.
In other words, if we only care about the welfare of one side of the market, there
can exist stable matchings much worse than the optimal ones (although still much
better than the theoretical bound of one-half).

When anarchy is good The price of anarchy is not the only important measure.
Our experiments so far reveal that the price of anarchy is lower for vertex labeled
graphs, especially as the degree grows. This is mostly because any perfect matching
is socially optimal. As more and more vertices get included in the matching, we
get closer and closer to the socially optimal matching. But this is essentially a case
of scarce resources, and no synergies — the average utility received by everyone in
a perfect matching is the value of the average vertex — there is no chance to make
everyone better off because some pairs work better together or like each other more.
If preferences were more heterogeneous, there would be more such synergies that
could be exploited. In order to explore this further, we experiment with varying the
level of homogeneity in preferences by making preferences a convex combination of

12 Elliot Anshelevich et al.

l T T T T 1

- --Ratio of stable to optimal | |
2 —Avg. utility per agent /
>
c =
= 0.95- 082
E g
S !
2 @
o o
e} ()
o] (o))
E 0.9+ 0.6 g
o Z
5

0.85 : : ! : 0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Degree of homogeneity of preferences

Fig. 4 The ratio of the realized stable matching to the maximum weighted matching (going up
from left to right, left Y axis) and the average utility received by each agent (going down from
left to right, right Y axis) as a function of the degree of homogeneity of preferences (0 being
completely heterogeneous, i.e. asymmetric edge-labeled, and 1 being completely homogeneous,
i.e. vertex-labeled). The graphs are bipartite, containing 100 nodes on each side, and the degree
of each vertex is 10. The average utility of any edge remains 0.5 for each setting. Results are
averaged over 200 runs.

vertex-labeled and asymmetric edge-labeled preferences, while holding the average
value constant. In this case the value received by u from matching with v is given by
Aw(v) 4 (1—X)z where both w(v) and z are sampled from exponential distributions
with mean 0.5, but w(v) is an intrinsic feature of the node v which is the same
for any u that is connected to v, while z is idiosyncratic (independently sampled
for each u that is connected to v). Then A represents the degree of homogeneity of
preferences. Figure 4 shows that, while the ratio of stable-to-optimal utilities goes
up dramatically as preferences approach pure homogeneity, this is accompanied by
a decline in average utility received by each individual. This indicates that having
some heterogeneity in preferences is a good thing for society: even if it leads to
a higher price of anarchy, everyone is better off than they would be in a lower
price-of-anarchy society.

5 Improving Social Outcomes

In this section, we consider how to improve the quality of stable matchings. We
consider, both theoretically and in simulation, the addition of a switching cost
to the mechanism so that an agent would have to pay in order to deviate from
the current matching. We find that it is possible to improve the quality of social
outcomes substantially by making only small changes to the incentives of the
agents, and thus without drastically changing the nature of the matching market.
Note that in the cases considered in this section, there is no change in preferences
of the sort discussed immediately above, so the price of anarchy is actually a good
proxy for social (dis)utility.

Anarchy, Stability, and Utopia: Creating Better Matchings 13

5.1 Approximate Stability and Switching Costs

An approximate equilibrium is a solution where no agent gains more than a small
amount in utility by deviating. In the case of matching, we consider the following
two common notions of approximate equilibrium: a multiplicative one and an
additive one. The first notion corresponds to a switching cost which is proportional
to the current utility of an agent, and the second notion corresponds to a switching
cost that does not depend on the utilities of the agents.

Definition 1 A matching is called a-stable if there does not exist a pair of agents
not matched with each other who would both increase their utility by a factor of
more than « by switching to each other.

If @« = 1, then this is exactly a stable matching. This represents behavior
where a player would only switch to an new strategy if this player received a
significant percentage increase of its utility. This reflects the fact that many people
would switch to a new brand of light bulb if it costs 10 dollars less, but are less
likely to do the same with a car manufacturer, since they care about improvement
relative to the amount being paid (utility being received). An a-stable matching
also corresponds to a stable solution if we assume that switching has a cost. In
other words, in the presence of switching costs, the set of stable matchings is
simply the set of a-stable matchings without switching costs. The switching costs
here are multiplicative, meaning that, for example, taxes are imposed on switching
where you must pay a percentage of your utility to actually make a switch.

The a-stable solutions defined above correspond to the multiplicative notion
of approximate equilibria. In Section 5.4, we also consider the additive version.
Specifically, we define additive a-stability as follows.

Definition 2 A matching is called additive a-stable if there does not exist a pair
of agents not matched with each other who would both increase their utility by
an additive term of at least a by switching to each other.

When considering additive approximate equilibria, it is customary to assume
that all weights have been normalized, and thus lie between 0 and 1. This assump-
tion is needed since without it, even though a may be a large number, it could still
be tiny compared to the weights of the edges, and so would not necessarily create
an additive a-stable solution. With this assumption, an additive 0-stable solution
corresponds to our usual notion of stability, while every solution is an additive
1-stable solution, since no agent can have a utility of more than 1, and so cannot
gain more than 1 by deviating. In terms of switching costs, additive a-stable solu-
tions correspond to scenarios where a fixed switching cost exists, instead of a tax
that is a percentage of player utility.

In this section we are concerned with understanding how increasing o improves
the quality of stable matchings. We are specifically concerned with the price of sta-
bility [7], which is the ratio of the utility of the best stable matching relative to
the optimum matching. Much recent work in network design [8] and routing [11,
30] has considered the price of stability in various contexts. The price of stabil-
ity is especially important from the point of view of a mechanism designer with
limited power, since it can compute the best stable solution and suggest it to the

14 Elliot Anshelevich et al.

i 1 1 1 1 1 1 1 1 1 1
0.9 1 11 1.2 13 1.4 15 1.6 1.7 1.8 1.9 2

Alpha

Fig. 5 Ratio of the social utilities of best a-stable and socially optimal matchings as a function
of a when the matchings are constructed according to our algorithm in symmetric edge-labeled
graphs. The increase between o« = 1 and a = 1.1 shows that introducing even small switch-
ing costs has the potential to produce significant social benefits. Preferences were sampled
uniformly at random on [0, 1].

agents, who would implement this solution since it is stable. Therefore, the price of
stability captures the problem of optimization subject to the stability constraint.

Below we present various theoretical bounds, showing that for symmetric edge-
labeled graphs, there always exists an a-stable matching with utility of at least
SOPT (where OPT is the value of the optimum matching), and that in vertex-
labeled graphs, there always exists an a-stable matching with utility at least
175 OPT. We provide constructive algorithms for finding these a-stable match-
ings. We also show corresponding results for additive a-stability where agents have
to pay an amount independent of the utility they are receiving in order to switch.

A summary of our theoretical bounds in graph form can be seen in Figure 6.

Our results show that we can implement better stable solutions by relaxing
the strictness of stability in our equilibrium. Our empirical results show even more
dramatic improvements than predicted by the theoretical bounds. For example,
Figure 5 shows that for « = 1.1 in the multiplicative setting we already obtain a
tremendous improvement in the quality of stable matchings, essentially obtaining
stable matchings that are as good as a matching with maximum social utility.
This means that adding a switching cost as small as five or ten percent can make
an enormous difference in the quality of stable matchings. In many situations,
it is reasonable to believe that a central controller can compute a good a-stable
matching, assign agents to that matching, and only allow them to deviate on
payment of the switching cost.

Anarchy, Stability, and Utopia: Creating Better Matchings 15

5.2 Edge-labeled Graphs

For edge-labeled graphs, we prove below that in the presence of switching costs of
a factor «, the price of anarchy is at most 2a, but the price of stability is at most
2/a. This means that as we increase «, there begin to be stable matchings that
are worse, but there always exists a stable matching that is close to optimal. For
a = 1, these bounds coincide, giving us the result that all stable matchings are
within a factor of 2 from the maximum weight matching. For a = 2, this gives us
the easily verifiable fact that the optimum matching is 2-stable.

Theorem 2 Let OPT be the value of the socially optimal matching. In any undirected
edge-labeled graph, there exists an a-stable matching whose social utility is at least
S OPT. Furthermore, the social utility of any a-stable matching is at least QLQOPT‘

Proof Denote by w(M) the weight of a matching M. First, notice that the socially
optimal matching is simply the maximum weight matching in this model, since
the social welfare of a matching is exactly twice its weight. Let OPT denote the
weight of the maximum weight matching, and prove that the weight of a-stable
matchings obeys the lower bounds mentioned in the theorem statement. We first
prove that for every a > 1, every a-Stable Matching in G is of weight at least OQI;T.

Let M be an a-stable matching in G, and M™* be a maximum-weight matching
in G. Let e = (u,v) be an arbitrary edge in M* \ M. Since M is an a-stable
matching, there must be either an edge ez = (u,w1) € M or an edge e3 = (v, w2) €
M such that w(e1) < aw(ez) or w(er) < aw(es) (if neither were true, then v and v
could match to each other and gain more than a factor of « in utility). Therefore
for every edge e in M*, either e € M, or there is an edge ¢’ of M sharing a node
with e such that w(e) < aw(e’). Since at most two edges of M* can share a node
with the same edge ¢’ of M (because M* is a matching), this means that if we
sum the above inequalities, we obtain w(M*) < 2a - w(M), as desired.

We now prove that there always exists an a-stable matching M such that
w(M) > Gw(M™) by giving an algorithm for finding such a matching:

Set M = M*
Sort the edges of G in order of decreasing weight.
For each edge e = (v1,v2) € G in this order:
Let e1, e2 be edges to which v1,v2 are incident in M, respectively (if they exist)
If @ is greater than both w(e1) and w(e2):
Remove e; and ez from M.
Add e to M.
End If
Loop

This algorithm considers all edges in the graph in order of decreasing weight, and
if the two nodes in the edge can gain a factor of « utility by deviating to this edge,
then we let them. If an edge e; does not exist, then for the new edge e to be added
to the matching, all we need is that @ > w(e2). Call the edge e = (v1,v2) in
the algorithm as the edge being currently examined. To prove correctness, we must
show two facts:

(i) The algorithm results in an a-Stable Matching.

16 Elliot Anshelevich et al.

(ii) The resulting matching is of weight at least w(#j*)a

To begin the proof of (i), notice that M is a matching. This is simply because
whenever we add an edge (u,v) to M, we also remove the edges incident to the
nodes u and v. Since we start with a matching M*, we know that M is a matching
at every point in the algorithm.

By Lemma 1, we know that if an edge e = (u,v) is in the matching M imme-
diately after it is examined, then it will not be removed from M later. Notice also
that if edge e = (u,v) is not in the matching M after it is examined, then it will
never be added to M later in the course of the algorithm, because the algorithm
only adds edges to the matching at the time that it is examining them. Therefore,
the final matching M consists exactly of edges that are kept in M at the time the
algorithm examines them.

To show that the returned matching is a-stable, suppose to the contrary that
there is an instability in the final matching M, i.e., an edge e; = (u,v) € M such
that w(e1) > aw(e2) and w(e1) > aw(es), where ez and e3 are the edges of M
incident to v and v (which may not exist). Since e; is not in the final matching
M, it could not have been included in the matching when it was examined. This
implies that at this time there was an edge ¢/ € M incident to (without loss of
generality) u, with w(e1) < aw(e’). This edge ¢’ cannot still be in the matching
M at the end of the algorithm’s execution, since otherwise e; would not form an
instability. Therefore, the algorithm must have removed edge e’ at a later point.
The only reason why edge ¢/ would be removed is if an edge e” were added to the
matching, with w(e’’) > aw(e’) > w(e1). Since the algorithm considers the edges
in order of decreasing weight, however, this edge ¢’ could only have been added
before the algorithm examined edge e;, and so we have a contradiction.

We now prove (ii). At each examination in the algorithm, one of two things
can occur. The trivial case is that no edge is formed so no change occurs in M.
The other case, in which a new edge e is added to the matching, adds an edge
of weight w(e) to M while removing at most 2 - () The ratio of the new edge

=,
2”@ = 5. By Lemma 1, once an edge

is added to the matching M by the algorithni it is never removed again, so the
total weight of the final matching M is at least Sw(M™), as desired, completing
the proof of Theorem 2.

weight to the old edges weight is therefore

Lemma 1 If an edge e = (u,v) is in the matching M immediately after it is examined,
then it will not be removed from M later.

Proof Suppose to the contrary that e = (u,v) € M directly after it is examined,
but is no longer in M at a later point. Without loss of generality, assume that e
was removed from M because some edge ¢’ = (u,w) was added. For this to occur,
it must be that w(e’) > aw(e). But since o > 1, and the algorithm examines the
edges in order of decreasing weight, then this addition of edge ¢’ could only have
occurred before the algorithm examined e, a contradiction.

5.3 Vertex Labeled Graphs

For vertex labeled graphs, results similar to Theorem 2 hold: the price of anarchy is
at most 14« and the price of stability is at most (14 «)/a. For a = 1 this gives us

Anarchy, Stability, and Utopia: Creating Better Matchings 17

the observation in Section 4 (notice that while it is easy to show a correspondence
between stable matchings for edge-labeled and vertex-labeled graphs, the same
does not hold for a-stable matchings).

Theorem 3 Let OPT be the value of the maximum-weight perfect matching. In any
vertez-labeled graph, there exists an a-stable matching whose social utility is at least
ﬁ% OPT. Furthermore, the social utility of any a--stable matching is at least H% OPT.
Proof For an edge e = (u,v), define w(e) = w(u) + w(v), and denote by w(M)
the weight of a matching M. First, notice that the socially optimal matching is
simply the maximum weight matching in this model, since the social welfare of a
matching is exactly equal to its weight. Therefore, we let OPT denote the weight
of the maximum weight matching, and prove that the weight of a-stable matchings
obeys the stated lower bounds. We first prove that for every a > 1, every a-Stable
Matching in G is of weight at least H%OtOPT.

The proof is similar to the proof of Theorem 2, but some extra details are
necessary. Let M be an a-stable matching in G, and M* be a maximum-weight
matching in G. Let e1 = (u,v) be an arbitrary edge in M™*\ M. Since M is a-stable,
there must be either an edge ex = (u,w1) € M or an edge es = (v,w2) € M such
that w(u) < aw(wsz) or w(v) < aw(wi) (otherwise u and v could match to each
other and gain more than a factor of a in utility). We call this edge a “witness”
for e1, since it prevents e; from being an instability for the a-stable matching M.
Therefore for every edge e; in M™, either e; € M, or there is such a witness edge
e of M sharing a node with e;.

The structure of vertex labeled graphs allows us to obtain better bounds than
we could for edge-labeled graphs. We prove that M has high weight by comparing
the weight of edges in M™* with the edges that act as their witnesses. As in Theorem
2, if the edge is also in M, then the weight does not change. Consider the case
where e = (u,v) € M acts as a witness for two edges ey, = (u,v’) and e, = (v,u’)
of M*. In this case, w(ey) + w(ev) = w(u) + w(v) +w(w') + w') < wu) +w(v) +
aw(u) + aw(v) = (14 a)w(e). If e only acts as a witness for e, then we know that
w(ew) = w(u) +w(v') < wu)+ aw(v) < aw(e). The edge e cannot act as a witness
for more than two edges, since M™ is a matching, and so e can only be touching
two edges of M*. Therefore, in the worst case w(M™*) < (1+ a)w(M), as desired.

To prove the other statement in the theorem, we construct an a-stable matching
with weight at least $§;w(M"). We use the same algorithm as in the proof of
Theorem 2, but we must sort the edges using a more complicated ordering than
simply by the sum of their node weights. Specifically, we define a new notion of
edge weight by p(e) = w(u)-w(v) for an edge e = (u,v). We then run the algorithm
in the proof of Theorem 2, with the weight of an edge e being p(e).

In the rest of this proof, we use the same notation as in the proof of Theorem 1.
We must show that:

(i) This algorithm results in an a-Stable Matching.
w(M™)a

(ii) The resulting matching is of weight at least =

Consider the definition of what it means for a node u to be a-stable in a vertex
labeled graph. It states that if (u,v) € M, then there cannot be an edge (u,v’) with
w(v") > aw(v). This is equivalent to stating that w(u)w(v’) > aw(u)w(v), which
is the same as saying that p(u,v’) > ap(u,v). Therefore, a vertex labeled graph is

18 Elliot Anshelevich et al.

UEL Best 1 09r

VL Best

=] 2
G 06 T 075
o o
o5l 1 0.7]
\ 0.65F
0.4f UEL Worst 1
06

VL Worst] 0.551

Fig. 6 The graph on the left shows the ratios of the best and worst stable matchings that
are known to exist compared with the socially optimal matching (the inverses of the prices of
stability and anarchy, respectively) in vertex labeled (VL) and undirected edge labeled (UEL)
graphs, as a function of «, the multiplicative factor by which the notion of stability is relaxed
(see Theorems 2 and 3). The graph on the right shows the ratio of the best stable matching
that is known to exist compared with the socially optimal matching as a function of an additive
version of a (the bound is the same for VL and UEL; see Theorem 4).

a-stable exactly when the same edge labeled graph is a-stable, with edge weights
being p(e). Since we know that our algorithm produces an a-stable matching for
edge labeled graphs with edge weights p(e), then it must also produce an a-stable
matching for our vertex labeled graph.

We now prove (ii). At each examination in the algorithm, one of two things
can occur. The trivial case is that no edge is formed so no change occurs in M.
The other case, in which a connection is formed, adds an edge e = (u,v) instead
of edges ey = (u,v’),ev = (v,u’) such that p(e) > ap(es) and p(e) > ap(ev). By
our definition of p, this implies that w(v) > aw(v’) and w(u) > aw(u’). The ratio
of the new edge weight to the old edge weight is (w(u) + w(v))/(w(u) + w(v) +
wu') +w()) > 1/(1+ 1) = T4a- By Lemma 1, once an edge is added to the
matching M by the algorithm, it is never removed again, so the total weight of the

(63

final matching M is at least $§;w(M™). This concludes the proof of Theorem 3.

5.4 Additive Approximate Stability

In this section, we consider the additive notion of a-stability (see Definition 2).
Recall that, when considering additive approximate equilibria, it is necessary to
assume that all weights have been normalized, and thus lie between 0 and 1. We
make this usual assumption, and can now present the following results.

For edge-labeled graphs, we prove below that in the presence of switching costs
of constant size a, the price of stability is at most 2(1 — «). For a = 0, this once
again gives us the result that stable matchings are within a factor of 2 from the
maximum weight matching. For oo = 1/2, this yields the interesting statement that
a maximum-weight matching is an additive 1/2-stable matching. Unfortunately, no
such nice bounds can exist for the price of anarchy of additive a-stable matchings:
consider a simple example of a 3-link path, with the first and third link having
weight «, and the middle link having weight 0. For this example, there is an
additive a-stable matching with zero social welfare, and so the price of anarchy

Anarchy, Stability, and Utopia: Creating Better Matchings 19

is unbounded. Indeed, in all graphs the price of anarchy becomes unbounded as
« approaches 1, since all solutions become stable, including ones with vanishingly
small value. The analysis from Section 5.2 only yields a bound of 2 + an/Q@ on
the price of anarchy, where @ is the social welfare of the worst additive a-stable
solution.

Theorem 4 Let OPT be the value of the socially optimal matching. In any undirected
edge-labeled graph, there exists an additive a-stable matching whose soctal utility is at
least ﬁ OPT, for a € [0,1/2]. Furthermore, the same holds for vertez-labeled graphs.
Proof The argument is essentially the same as in Theorem 2. We use the same
notation as in the proof of Theorem 2, and the algorithm for finding a good
additive a-stable matching is the same, except that we add e to M when w(e) — «
is at least w(e1) and w(ez), instead of when w(e)/a is greater than w(e;) and
w(e2). The proof that this results in an additive a-stable matching is completely
analogous to that of Theorem 2. The argument to establish the desired utility
bound is analogous as well, except that the ratio between the weight of newly
added edges and the removed edges is at most Zi(uf‘z(:))_a) = 2_2a1/w(e) >
since w(e) < 1 by our assumption that the weights are normalized.

The same proof works for vertex-labeled graphs. To form a good additive a-
stable matching in this case, we can use the same algorithm as for edge-labeled
graphs (with w(u,v) = w(u) + w(v)), not the algorithm with alternative edge
weights in the proof of Theorem 3.

6 Convergence to Stability

While many good algorithms exist for computing stable matchings (Gale-Shapley
being the most standard), we would like to consider more natural dynamics for
forming stable matchings. Such dynamics are likely to occur in practice if there
were no central planner to compute a matching for the agents, and if instead the
agents tried to do what was best for themselves in a decentralized manner. In such
cases, how likely is it that realistic algorithms yield stable outcomes?

We study the convergence properties of a particular decentralized partner-
switching algorithm in which the vertices on a graph are sorted randomly and
then the following algorithm is repeated until convergence: for each vertex, in the
sorted order, find the best partner that vertex can be matched with. The vertex
can be matched with a partner if an edge connects them and the deviation is
utility-increasing for both the vertex and its new partner. The best partner is the
one of these that yields maximum utility for this vertex. Add this new pair to the
matching, removing any pairs that this vertex or its new partner were previously
connected to.

This algorithm captures the intuitive notion that, in a society of agents, pairs
take turns deviating from the current matching if it is in their interest to do so.
We call each iteration through all agents a phase. Notice that instead of iterating
through all the agents in a fixed order, we could instead pick random agents to
deviate at every step, as done by [6]. None of our results change significantly in
this case.

20 Elliot Anshelevich et al.

Theorem 5 This algorithm converges to a stable matching after at most n phases in
vertez-labeled and symmetric edge-labeled graphs.

Proof First we show the result for vertex-labeled graphs. Let S be the set of nodes
on one side of the matching with maximum weight w (there can be many such
nodes, since the weights of nodes may not be distinct). Define v to be the node
from S such that after the first phase of the algorithm, v has a partner u with the
largest weight w(u).

If out of all the neighbors of v, u has the largest weight, then the matching
between v and u will always be stable from this point until the end of the algo-
rithm’s execution, since v and u are each others’ highest weighted neighbors. This
means we can simply think of v and u as removed from the graph, since they will
not affect the algorithm in future phases. Otherwise, we can assume that there
exists a neighbor v’ # u of v with w(u’) > w(u). When we consider v in phase 1, v
would like to connect to u’ over u. The only reason why u' would not be matched
with v is if it were already matched to a node v’ € S. But this cannot be by our
choice of node v.

Therefore, we know that during each phase, we can remove a pair of nodes
(v,u) and their incident edges from the graph (since this pair will always be sta-
ble and matched during the rest of the algorithm). After at most n phases, the
resulting matching will be stable (where n can be the size of the smaller side of
the matching).

The proof of convergence for symmetric edge-labeled graphs is similar, and is
essentially the same as that of [6]. Consider an edge (u,v) of maximum weight in
the graph. After the first phase, u will be matched with v (because u prefers v to
all its other neighbors and v prefers u to its other neighbors), and we can remove
v and u from the graph. The rest of the argument is the same as above.

The above theorem says that the simple decentralized algorithm described
above converges to a stable matching in time O(n?), since each phase takes linear
time. Notice, however, that if instead of switching to its best partner, the agents
simply switched to a random improving partner, the same argument would guar-
antee convergence to a stable matching in an expected time of O(n?d), where d is
the maximum degree of the graph.

In practice (see Figure 7), on random utility distributions similar to those
described in previous section, the convergence time for vertex-labeled graphs does
indeed appear to be quadratic, but it is interesting to see that the convergence
time for symmetric edge-labeled graphs seems to be linear. We conjecture that
the algorithm converges in expected linear time for these graphs, perhaps because
good edges for one node are in expectation also good for the other node in the
edge, because of the symmetric preferences.

Asymmetric edge-labeled While Theorem 5 guarantees convergence for the vertex-
labeled and symmetric edge-labeled utilities, this is not the case for asymmetric
edge-labeled graphs. Unfortunately, in this case there are easy examples where
this algorithm can cycle. In our experiments, however, for small n (the number of
nodes on each side) this algorithm converged to a stable matching on all but a
small percentage of cases, showing that the bad scenarios are not “typical.” As n
gets larger, this algorithm converges more and more rarely (approximately 2% less
for every additional node), with convergence essentially non-existent for n = 70.

Anarchy, Stability, and Utopia: Creating Better Matchings 21

3000 ‘ ‘ ‘
—Vertex-labeled graphs
2500~~~ Symmetric edge-labeled graphs

N

o

o

o
T

Number of switches
[[
o (o)
o o
o o
T T

5001

il | 1 1 1 1 1 1 1
%O 40 60 80 100 120 140 160 180 200
Number of vertices per side (degree = x/5)

Fig. 7 Average number of switches the greedy algorithm makes before the resulting matching
is stable for vertex-labeled and symmetric edge-labeled graphs. Note the quadratic growth for
vertex-labeled and linear growth for edge-labeled graphs. Utilities are sampled independently
from an exponential distribution with mean 0.5. Results are averaged over 200 runs.

7 Discussion

This paper explores the prices of anarchy and of stability in matching markets. We
demonstrate that even though the price of anarchy can theoretically be high, when
utilities are randomly sampled, the loss in social welfare from strategic behavior
is generally limited. This result encompasses many different graph and preference
structures, and is experimentally robust. While the downside is limited, even this
downside can be alleviated: a significant improvement in social welfare can be ob-
tained by suggesting a good matching and requiring agents to pay small switching
costs to deviate. We show this theoretically by using an algorithm for constructing
approzimately stable matchings, and then demonstrate that the algorithm is effec-
tive in experiments. We also show that simple greedy partner switching algorithms
can converge quickly to stable matchings in some graph structures.

There are several interesting avenues for future work. First, while we examine
basic additive social utility, alternative measures of social utility may be relevant
to real-world applications, and their properties may be significantly different (for
example, a Rawlsian social welfare function, where the utility of the pair receiv-
ing minimum utility is maximized may be appropriate in situations where the
worst pairing is a bottleneck — perhaps in development of large software systems).
Understanding the loss in social welfare from the stability constraint in such sit-
uations is important. Second, it may be possible to use random graph models
and probability theory to come up with theoretical approximations of some of
our simulation results under particular distributional assumptions. Third, from a
practical perspective, future work should include understanding real-world utility
distributions and how they affect the social outcomes of matching as compared to
random distributions of utilities. And fourth, from a mechanism design perspec-
tive, it would be interesting to explore whether agents would choose to participate
in a switching-cost based, designer-suggested matching mechanism.

22 Elliot Anshelevich et al.
References
1. A. Abdulkadiroglu, P.A. Pathak, and A.E. Roth. The New York City High School Match.

2.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

American Economic Review, 95(2):364-367, 2005.

A. Abdulkadiroglu, P.A. Pathak, and A.E. Roth. Strategy-proofness versus Efficiency
in Matching with Indifferences: Redesigning the NYC High School Match. American
Economic Review, 99(5):1954-1978, 2009.

A. Abdulkadiroglu, P.A. Pathak, A.E. Roth, and T. Sonmez. The Boston Public School
Match. American Economic Review Papers and Proceedings, 95(2):368-371, 2005.

Atila Abdulkadiroglu, Yeon-Koo Che, and Yosuke Yasuda. Resolving Conflicting Prefer-
ences in School Choice: the Boston Mechanism Reconsidered. American Economic Review,
2011. forthcoming.

D.J. Abraham, A. Blum, and T. Sandholm. Clearing algorithms for barter exchange
markets: enabling nationwide kidney exchanges. In Proceedings of the 8th ACM conference
on Electronic commerce, pages 295-304. ACM Press New York, NY, USA, 2007.

H. Ackermann, P.W. Goldberg, V.S. Mirrokni, H. Roglin, and B. Vocking. Uncoordinated
two-sided markets. In Proceedings of the 9th ACM Conference on Electronic Commerce
(EC), pages 256—263, 2008.

E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Roughgarden.
The price of stability for network design with fair cost allocation. In Proc. FOCS, pages
295-304, 2004.

. E. Anshelevich, A. Dasgupta, E. Tardos, and T. Wexler. Near-optimal network design

with selfish agents. In Proceedings STOC, pages 511-520. ACM Press New York, NY,
USA, 2003.

A. L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,
286(5439):509-512, October 1999.

G.S. Becker. A Treatise On The Family. Family Process, 22(1):127-127, 1983.

G. Christodoulou and E. Koutsoupias. On the Price of Anarchy and Stability of Correlated
Equilibria of Linear Congestion Games. Lecture Notes In Computer Science, 3669:59, 2005.
Sanmay Das and Emir Kamenica. Two-sided bandits and the dating market. In Proc.
1JCAI pages 947-952, Edinburgh, UK, August 2005.

M. Dawande, S. Kumar, V. Mookerjee, and C. Sriskandarajah. Maximum Commonality
Problems: Applications and Analysis. Management Science, 54(1):194, 2008.

LE Dubins and DA Freedman. Machiavelli and the Gale-Shapley algorithm. American
Mathematical Monthly, pages 485-494, 1981.

D. Gale and L. S. Shapley. College admissions and the stability of marriage. The American
Mathematical Monthly, 69(1):9-15, 1962.

D. Gale and M. Sotomayor. Ms. Machiavelli and the stable matching problem. American
Mathematical Monthly, pages 261-268, 1985.

MX Goemans, L. Li, VS Mirrokni, and M. Thottan. Market sharing games applied to con-
tent distribution in ad hoc networks. IEEE Journal on Selected Areas in Communications,
24(5):1020-1033, 2006.

P.J. Held, B.D. Kahan, L.G. Hunsicker, D. Liska, R.A. Wolfe, F.K. Port, D.S. Gaylin, J.R.
Garcia, L. Agodoa, and H. Krakauer. The impact of HLA mismatches on the survival of
first cadaveric kidney transplants. The New England journal of medicine, 331(12):765,
1994.

N. Immorlica and M. Mahdian. Marriage, Honesty, and Stability. In Proceedings of the
Sizteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 53-62, 2005.
R.W. Irving, P. Leather, and D. Gusfield. An efficient algorithm for the ”optimal” stable
marriage. Journal of the ACM (JACM), 34(3):532-543, 1987.

B. Jovanovic. Job Matching and the Theory of Turnover. The Journal of Political Econ-
omy, 87(5):972, 1979.

V.S. Mirrokni. Approximation Algorithms for Distributed and Selfish Agents. PhD thesis,
Massachusetts Institute Of Technology, 2005.

S. Mongell and A.E. Roth. Sorority Rush as a Two-Sided Matching Mechanism. American
Economic Review, 81(3):441-464, 1991.

A. E. Roth and Elliott Peranson. The redesign of the matching market for American
physicians: Some engineering aspects of economic design. American Economic Review,
89(4):748-780, 1999.

A.E. Roth, T. Sénmez, and M.U. Unver. Kidney Exchange. Quarterly Journal of Eco-
nomics, 119(2):457-488, 2004.

Anarchy, Stability, and Utopia: Creating Better Matchings 23

26.

27.

28.

29.

30.

31.

32.

33.
34.

A.E. Roth, T. Sonmez, and M.U. Unver. A kidney exchange clearinghouse in New England.
American Economic Review, 95(2):376-380, 2005.

A.E. Roth and JH Vande Vate. Random Paths to Stability in Two-Sided Matching.
Econometrica, 58(6):1475-1480, 1990.

Alvin E. Roth and Marilda Sotomayor. Two-Sided Matching: A Study in Game-Theoretic
Modeling and Analysis. Econometric Society Monograph Series. Cambridge University
Press, Cambridge, UK, 1990.

Alvin E. Roth and Xiaolin Xing. Jumping the gun: Imperfections and institutions related
to the timing of market transactions. The American Economic Review, 84(4):992-1044,
1994.

A.S. Schulz and N.S. Moses. On the performance of user equilibria in traffic networks. In
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
86-87, 2003.

D.L. Segev, S.E. Gentry, D.S. Warren, B. Reeb, and R.A. Montgomery. Kidney paired
donation and optimizing the use of live donor organs. Jama, 293(15):1883, 2005.

X. Su and S.A. Zenios. Patient choice in kidney allocation: A sequential stochastic assign-
ment model. Operations research, 53(3):443-455, 2005.

R.H. Thaler and C.R. Sunstein. Nudge. Yale University Press, 2008.

D.J. Watts and S.H. Strogatz. Collective dynamics of ’small-world’ networks. Nature,
393(6684):440-442, 1998.

